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THE ATTENUATION OF SHOCK WAVES IN A SHOCK TUBE
WITH EXPERIMENTAL COMPARISON

By Robert L. Trimpi and Nathaniel B. Cohen
SUMMARY

The linearized attenuation theory of NACA Technical Note 3375 is
modified in the following mamner: (a) an unsteady compressible local
gkin-friction coefficlient is employed rether than the equivalent steady-
flow incompressible coefficient; (b) & nonlinear approach is used to
permit application of the theory to large attenuations; and (¢) transi-
tion effects are considered. Curves are presented for predicting atten-
uvation for shock pressure ratios up to 20 and a range of shock-tube
Reynolds numbers. Comparison of theory and experimental data for shock-
wave strengths between 1.5 and 10 over a wide range of Reynolds numbers
shows good agreement with the nonlinear theory evaluated for-a transi-
tion Reynolds mumber of 2.5 X 106.

INTRODUCTION

The increasingly widespread use of the shock tube as an aerodynamic
testing faeility has led to the closer investigation of the flows present
in such tubes. In particular, since the deviation of these flows from
those predicted by perfect fluid theory is often of large magnitude,
these deviations have been investigated fairly thoroughly. Several such
studies, either of an experimentel or theoretical nature, may be found
in references 1 to 11. Investigations of the boundary layers in shock
tubes have been made in some of the aforementioned references as well
as in references 12 to 17. This list of references does not cover the
complete field of litersture existing on these topics but is representa-
tive of the various generel treatments.

Consideration of the entire flow field from the leading edge of
the expansion wave to the shock wave 1s necessary to cbtailn en accurate
picture of the waves traveling along the shock tube. These waves are
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responsible for the deviations from perfect fluid flow in shock-wave
strength (attenuation) with distance, 1n pressure and density at a given
dlstance with time, and so forth, which have been noted by various
investigators. The analysis of reference 1 was the first to treat this
complete flow. Figure 1, a reproduction with minor chenges of figure 1
of reference 1, is the basic wave diagram of the unperturbed shock-tube
flow showing the various flow regions to be considered with typicel char-
acteristics and particle paths. Thils linearized analysis (ref. 1) was
based on an averaged one-dimensionel nonsteady flow in which well-shear
and heat-transfer effects generated pressure waves to perturb the' perfect
fluid flow. This averaging process essentlally implied thick boundary
layers. The expansion wave was treated as a "negative shock" or zero-
thickness wave. The resulting perturbation equations then hinged on the
evaluation of the local skin-friction coefficient cg, which in refer-
ence 1 was assumed to be gilven by an equivalent incompressible steady flow.
Consequently, the application of the results of reference 1 was limited
to shock pressure ratios in which this asgsumption for cp was valid,

although the analysis was still appliceble for other pressure ratios
when the proper choice of ¢y was employed. The assumption of Incom-
pressibility should apparently eliminate the strong shock pressure ratios
from the range of valildity.

Solutions to the laminar boundary-layer equations employing a linear
viscosity-temperature relastion (refs. 2, 3, and 1%) show that the non-
steady character of the flow is such that the equivalent laminar steady-
flow assumption is in error, irrespective of compressibility, for most
conditions except that existing in the cold-gas region a for strong shock
waves. On the other hand, the turbulent boundary layer is not nearly so
sensitive to the unsteady character of the flow. Reference 15, which
assumed a one-seventh-power velocity profile similar to that of refer-
ence 1, reported that even for infinite shock pressure ratlios the effect
of unsteadiness would produce only a maximum variatlon in turbulent skin
friction of 5 percent in the cold gas and of 22 percent in the hot gas.

The only other attenustion analysls to date thet considers the entire
flow fileld is that of reference 2. This analysis is similar to that of
reference 1 in that it is a small-perturbation approach using traveling
waves and a negative shock, the major difference being that the pressure-
wave generstlons arise because the boundary-layer-displacement thickness
changes with time. (The boundary-lsyer-displacement thicknesses of
ref. 15 are used.) Flows with thin boundary layers having a linear
viscosity-temperature variestion are required for this treatment to apply.
The asttenustions predicted by references 1 and 2 for turbulent boundary
layers agreed within 10 percent for shock-pressure ratios up to 6 in
spite of the marked differences assumed in the mechanism for handling
the wall effects. The perturbations in the flow behind the shock show
a larger difference between the two approaches.
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The deviations from ideal theory discussed arise for the most part
from wall effects, that is, the perturbations in the shock-tube flow
caused by wall shear end heat transfer. Much recent work has been done
using the shock tube as a testing medium to provide very high-tempersture
flows of short duretion. (See, for example, refs. 9 and 18.) In these
cases, deviations from 1deal fluild flow will also aerise becaunse the air
at high temperatures does not behave as an ideal fluid. It would be
difficult to separate the resl-gas effects from the wall effects; there-
fore, the present analysis, like those of references 1 and 2, is con-
cerned only with the effects of wall boundary layer upon the inwviscid
outer flow, the fluld being considered as an ideal gas.

The turbulent theory of reference 1 has been compered with experi-
mental data for attenuation in references 1, T, 8, and 10 and good agree-
ment has been found in general. Predicted pressure perturbetions in the
hot gas by the method of reference 1 agreed well with the experimental
results reported in the same pgper. Fair to good sgreement between
theory and experiment is reported in references 7 and 10 for the hot-
gas average density variation with time in the flow behind the shock
wave; poor egreement is reported for the cold-gas flow where the finite
expansion fan has been trested as a negative shock.

Since the deviatlons from the inviscid fluid flow often become
large in ceses of serodynamic shock-tube testing, the linear, or small-
perturbation, theories of references 1 and 2 are no longer applicsable
and recourse must be made to some sort of nonlinear spproach.

In order to obtain an exact theory for predicting the perturbations
in a shock-tube flow, a rigorous treatment would be required first to
the solution of the boundery-layer flows. The boundery-layer equations
would have t0 be solved not only in region B but also inside and after
the expansion fan which is considered to be of finite extent. For
laminar flows the mailn difficulty would probebly be the correct handling
of the viscosity variation across the boundery layer. For turbulent flow
& rigorous treatment sppeesrs to be lmpossible without a tremendous
increase in knowledge of the mechanics of turbulence. Once the boundary-
leyer solutions were determined, the vertical wvelocity at the edge of the
boundery layer could, if the boundary layers were thin, be used in the
manner of reference 2 to determine the local pressure waves generated.

The second major difficulty in obtaining & rigorous perturbation
solution would arise from the treatment of the entropy discontinuilty.
The theoretical contact surface increases in extent with distance pro-
gressed down the shock tube due to mixing and diffusion (the former is
the major influence). This process not only generates pressure waves
but also alters the reflected and transmitted wave strengths of the pres-
sure waves generated by the boundary layers.



NACA TN 43h7

If a rigorous solution such as that Just described was availsble,

then 1t would without question be the one
reference 1 and the theory of the present
effects can be averaged across the flow.

because no such physical mechanism exists
mission of these effects across the flow.
solution there 1s no evidence to indicate
a shock-tube perturbation theory based on
larger magnitude than those introduced by

to be employed. The theory of
report assume that the wall
This assumption introduces errors
for the instantaneous trans-

In the ebsence of the rigorous
that the errors introduced by

an aversging process are of a
the neglect of the aforementioned

consideretions required for a rigorous solution. In addition, there is
the possibility that an averaging process might be more gppliceble as the
boundary layer fills a greater part of the shock-tube cross-sectilional
area. Consequently, the extension of the method of reference 1 in the

present analysis is justified.

In the present paper the analysis of

reference 1 is first modified

to eliminate the restrictions imposed by the incompressible equivalent
steady~-flow assumption for local skin friction; and then a nonlinear
theory is derived which permits application of the analysis to large
attenuations. It will be assumed that the reader 1s familiar with the

baslc theory and essumptions of reference

1 so that repetition in this

paper mey be avolded. This modified theory wlill be compared with experi-

mental data covering a wide range of flow

variables. The theoretical

and experimental studies reported herein were conducted at the Gas

Dynamics Branch of the Langley Leboratory

during 1955 end 1956.

SYMBOLS
a veloclty of sound
€
Cf="']§‘f cr(g)at
o)
Cn constant defined by equation (8)
Cp local skin-friction coefficient, 2TW/DU2
Cy coefficient of speciflc heat at constant
volume
Cp coefficient of specific heat at constant

pressure

L
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D
1t *
E=1+—" |5 _
Uy - U\S
Tsms Fym s 8xen? Exn

<= n+l
[on+1e\® 5

Fp = (? s 5) CpB )

Gp or Gpn

gn = Kegp

K

In or Tyn or T

Z*

M= U/a
My = U/aq,
Mﬁ = U/aB
Mg = Us/am

k % Ares

hyd_'['au.lic diameter, m

functions defined by equation (39b)

constant defined by equation (36)

ratio of contributions of P waves to total
wvaves generated in region B,

aMg - Mg /?ELQ
1+ Mg - QMS\I‘B

linear attenuation with first subscript
describing boundary layer appropriate to
region o and second subscript to region B;

P -
that 1s, L7,T = —EE———EEQ for region a
P
turbulent with n =7 &and region B as
transitional

fixed distance along shock-tube axis

distance the shock moves from a given polnt
until the effects of transition in the flow
generated at that point first influences
the shock
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reclprocal of velocity exponent in boundary Ld
1.1 '
=or=
layer, 2= (X oo »
y,Uﬁ

arbitrarily denotes subdivisions I, II, III,
etc. of hot-gas region

nonlinear attenuation with first subscript
describing boundary layer appropriate to
region o and second subscript to region B

Prandtl number

characteristic parameter, —EE axU

effective characteristic wave parameter
defined by equations (43)

static pressure

L

gas constant; Reynolds number %%

*
Reynolds number of transition, H%_

entropy

temperature

wall temperature
adiabatic wall tempersiture
time

free-stream velocity

shock wvelocity
velocity of wave which generates flow

velocity in boundary layer

distance along shock tube from diaphragm
station
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o

5*

(o2
~
e

(¢4
ct

——

’U||3’>
e’
w

=
I
&

distance from surface

function defined by equation (Bl2)

function defined in equations (31)

ratio of specific heats, cp/ey; assumed
as 1.40 for computations

length of segment into which shock tube is

divided for nonlinear treatment

characteristic derivative in boundary layer,

characteristic derivative in boundary layer,
*
9 ;18 13()
& U 8 E ot

boundary-layer thickness; also indicates -
differential quantity

boundary-layer displacement thickmess,
co
1- H)dy
NG

characteristic derivative in potential flow,

a( ) _Y-16]
vy + (U £ a) =

contribution to attenuation due to P waves
in region B

recovery factor, assumed equal to 0.85 for
laminar flow and 0.90 for turbulent flow
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e boundary-leyer momentum thickness,
[+ ]
8-
S, 863
6o boundary-layer momentum thickness at £ = go
fa * *
K = E; for &7 > &3 and if E" £ &3, its value is 1
M coefflcient of viscosity
v coefficient of kinematic viscosity
E dlstance flow hes progressed along surface
Eq distance flow has progressed along surface
at entropy discontinuity
o distance flow has progressed along surface
when 6 = 64
£* distance flow has progressed along surface
at transition
o} density
= B0
g = a5
Tw wall shearing stress
¢P,a’¢P,B’¢Q,B’¢s,aA¢s,B influence coefficients, defined in sppendix A
¢§,¢a influence coefficients defined by
equation (Lk)
On Or Qp compressibility correction
w exponent in viscosity-temperature law,
po~ T®
I,IT,III,etec. subdivisions of hot-gas region B for non-

linear treastment (see fig. 8)
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Subscripts: -

Letter subscripts not included in the symbols defined sbove refer,
in general, to values at points or within reglons shown in figure 1.
Numbered subscripts refer to points in figures 8 and 9. Exceptions to
be noted, however, are as follows:

m,n refers to velocity profile parameter m,n

o] perfect-fluid wvalue

t at time t

vs evalueted immediastely behind shock, that is,
point v located at x = Ugh

x at distance x

T denotes attenuation with transition

X arbitrary condition in shock-tube free stream

std denotes NACA standard stmospheric conditions

A prime on a symbol indicates & quantity evaluated at reference
temperature.

THEORY

Derivation of Expressions For Local
Skin-Friction Coefflicient
The skin-friction coefficient for the flow behind wave-induced flows
will be found by an integral method. An incompressible skin-friction
coefficient will first be determined and then a simple compressibility
correction will be applied.

The integrated equation of motion for the incompressible boundary
layer with zero pressure gradient is (see ref. 1k):

36 138"y T _ 1
(&)t * a(g)x "R 2 (1)
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The form parameter &%*/60 1s assumed to be constant; this has been
shown to be true for the unsteady wave-induced laminar flow (see ref. 14)
but has not been completely established for turbulent flows. Equation (1)
then becomes

36 1 8%/3e\ _ 1
<3x)t T3 e<a+,)x 5ot (2)

Since the resulting expression for c¢p will ultimately be used in

the attenuation formulas wherein the integral \/ﬁcf(g) d¢ 1s desired,
the variasble §¢ 1s introduced. The varieble § 1s defined as the dis-
tance & particle in the free stream has moved to reach the point (x,t)

since acceleration by the passing wave which originated at x = 0 at
t = O and which travels with velocity Uy. Thus,

§(x,t) = EW—U—wa - x) . (3)

In the case of flow in a shock tube, the value of Uy is Ug for

the flows induced by shock waves. If the assumption of reference 1 is
followed and the expansion wave replaced by a wave of zero thickness,
moving with the speed of the leading edge.of the originsal expansion
wave, then Uy = -a..

The differential equation (2) is transformed from the Xx,t coor-
dinate system to the §¢,t system by using the following derivatives:

8- G-l

8-, )]

Thus equation (2) becomes

%0\ , 18%1f38) _ 1
(ag>t+u 8 E<at)§ 2E T )

(%)
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where

E=l+uwutru<%-) 2

Now equations (2) and (5) are differential equastions capsble of
solution by epplication of the method of characteristics. The slopes
of the characteristics are

At _ 1B

HKx U ©
for equation (2) and

At _18%1

AE U 6 E

for equation (5).

Thus, if the symbol Af/At is used to denote the derivative along
a characteristic of slope At/At, equation (5) may be written as

G]
%:%Cf (7)

For steady-flow boundary leyers with zero pressure gradient, 1t has
been esteblished that cg = cg(5,U,v). If this relation is assumed to

hold for unsteady flows in the same form as for steady flows, then

2

- ce = %(@) w1l (8)

14

For turbulent flows n 1is the reciprocal of the exponent in the

o]
boundary-layer velocity profiles. For laminar flows the value of n is
one. The Cp terms are asrbitrary constants to be evaluated later and
mey be coumpletely different for the steady and unsteady flows.

1l/n
fractional power expression % = Z) / used to describe the turbulent
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Combining equations (8) and (7) and integrating yields:

2 .
TT -2
0 _ 1 (U8} T TR (%)
At 2E \v 8
2 2.
6 — +1 pE
f gotl AG:.CEY._G_)n f At {10)
)N 2E\U B Eo
il
= 5
- ol n+ 3Cnfv e
6 = |60 +n+1§3'<ﬁ'5') (&-ﬁo) (11)

Substituting equation (11} into equation (8) to obtain cp as & func-
tion of & ylelds:

2 o ms 2 D3 w3
nt3 — T n+l s \n+l
- [pr*tlg?8 p+3|n+ 1 o wl 2E[6) (U Ule -
cf(g)_<2n+3E8) N e cn<e> <v> +v(§ fo
(122)
-2
2 ot3 +5
2 —
L 1/ye \n+l
- 3n+l£E_§n+<E’_9) Uf
cp(8) = FoE™ n+30n(9) y +V(e to (120)

For the special case of 65 = 0 &at & which corresponds to flow
initlation at ¢, there results

2 .2

es(t) = FnE;‘BEé(e - éoﬂ w2 (12¢)

The values of the various Fp terms, which are directly related to
the hitherto arbitrary Cp wvalues, willl now be determined to match knowm
solutions for certain limiting cases. If the ratio UW/U becomes
infinitely large, the solution must be the same as that for an infinite
flat plate in contact with a fluid ilmpulsively started from rest at time
t = 0.

&
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Under these conditilons

£ -8 =Ut

*
E =2
6

2
*\o+3 “nt3
0 -5 5

\v,

13

(13)
2

7/

The solution, known as the Rayleigh solution, to such an impulsive laminar
flow over a plate 1s

eg(E) = 1.128(ﬁ>

v
(5_*.) - 2.469
© /Rayleigh

Consequently,
casg {(n = 1)

L
2

Fl(%f> - 1.128

Fl = 0.718

or

On the other hand, if Uwa becomes infinitely small, the solution

(14)

/

in order to match the Rayleigh solution for the laminar

(15)

must be the same as that over a semi-infinite flat plate in steady flow
(that is, the so-called Blasius problem).

For these conditions

E=1.0

ep(E) = FnGJ

(16)
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whereas the corresponding form of the Blasius solution for laminar flow
is
N

o+

cp = o.66l+l:%(g - go)]

5%
2 = 2.605
9 /Blasius

Thus, if the Blasius solution were to be matched, it would be nec-
esgary for

? (17

J

F) = 0.66L

Two possible solutions are then aveilable for the laminar
incompressible~flow caese depending upon which limiting velue 1s matched:

Rayleigh 1imit (%W— —)m):

1
JUIIRE
(o£)pey (8) = 0.718(1 + 1.469 UWUY = [g(g - go):' ' (18a)
Blasius linmit (EUW- —>O>:
L 1
2 "2
(cg)n=n(8) = 0.66l><1 + 1.605 UWU‘:’ ) [g(e - Eo)] (18b)

In figure 2 the values for cf\,%(g - go) as determined by four

different means are plotted asgeinst pressure ratio across a shock in an
air-air shock tube. The upper branch of the curves applies to region B
behind the shock, and the lower branch applies to region « behind the zero-
thickness expansion wave assoclated with the shock of strength Pgo /pw.
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In addition to the values determined from equation (18), there are shown
values which would be cobtained, if the fluid were assumed to be incom-
pressible, by the integral method of reference 14 and the numerical solu-
tion to the Prandtl boundary-layer equations. (The results of ref. 15
are applicable to this numerical solution.) The egreement between both
the curves of equation (18) and the referenced curves is very good. How-
ever, since the curve based on the Rayleigh limit gives a better approxi-
mation in reglon B, which will be shown to dominate the attenuation equa-
tions, the Rayleigh values of Fj = 0.718 and ©%/6 = 2,469 shall be
used for the remainder of this paper. Reference 17 also employed a nor-
malized Rayleigh veloclty distribution in the treatment of flow induced
by shock waves.

For the turbulent case two analogous limlting processes are not
availaeble in order to determine the values of Fp. The turbulent boundary-

layer theory is semiempirical and relies on experiments to supply con-
stants for the resulting equations. Since no "Rayleigh-type'" experiments

have been performed, there is no limiting process 2? —eo to agpply for

the turbulent case. There is, however, the semi-infinite flat-plate
solution corresponding to the limit %? - 0. This solution (see refs. 1

and 19) assumes a velocity profile

1
% = (g) /1 and results in a skin-

friction coefficient expressed as
-1
>

ep(8) = 0.0581 u(e - &) (19)

v

The combination of equations (16) and (19) results in a value of
F7 = 0.0581.

1/n
For profiles of the family % = (g) it mey be shown that
~N
L. n
5 (n+ 1)(n+ 2)
g._1 f (20)
&/ n+1

o
*
B
+
n
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Therefore, the expression for the one-seventh-power turbulent veloc-
ity profile skin-friction coefficient in the nonsteady incompressible
flow becomes

1
5 -
cp(t) = 0.0581(1 + % UWU"_J 5 %(g - go) (21)

-

Since there was only a mlnor difference between the unsteady-flow
velues of cp for laminar flow when based on the limiting cases of

Uy Uy

T -0 and T —0, it 1s expected that the turbulent-flow agreement

Uy

would be Just as favorable if results were avallable for IF —-w. Con-

sequently, equation (21) is assumed to be a fairly close approximation
to the correct answer. Equation (65) of reference 15 is very similar
to equation (21) but was derived in a different way.

The skin-friction-coefficient relation of equation (19) corresponding
to the one-seventh-power profile law is no longer valid at arbitrary large
values of Reynolds number in incompressible steady flow. Instead a logs-
rithmic law is often used. (See ref. 19.) However, since a power profile
is easlily handled by these methods, the skin friction on a semi-infinite
plate for these large Reynolds numbers is found to be closely approxi-
mated by the relation .

(o) | o

cp = 0.0186 Eﬁf_:_fgz (22)

v

which is compatible with the relation % = (y/8)1/13. 1If for consistency
it is further assumed that 8&%*/6 has the value 15/13 (the value for
n = 13), then the unsteady skin-friction coefficient would be given by

1 L

8
_ 2 W \°PPe - )

No claim is advanced that a 1/15—power profile actually exists at these
higher Reynolds numbers; it is only necessary for equation (22) to be
valid for steady flow end the value of 8%/8 +to be 15/13.
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Tt was shown in reference 14 that the skin friction in region o is
correctly given by the method of characteristics using the boundary con-
dition 06 =0 for E =0 at x = -agt (that is, on the zero-thickmess

expansion wave) for that part of « where x < Ut68/8 and the boundery
condition 8 =0 for £ =0 .at x = Ugt (that is, on the shock wave)
for that part of o where Ut6/8* € x S Ut. Sketch (a) shows a boundary-
layer momentum characteristic. In order to determine the unsteady fric-
tion coefficient at point ¢ in the reglon in question, UtB/S"." <€ x € U,
the boundary condition of © = O on the shock wave (point a) 1s correct.
In the analysils which follows, the boundary condition © = O on the
expansion wave (point b) is used instead. Friction coefficlents are
shown qualitatively in sketch (b). The solid curve represents the case
with the boundary condition on the shock whereas the dashed curve repre-
sents the case with the boundary condition on the expansion wave. In
the region in question it is seen that the differences are not serious.
Because of the relatively small contribution of region o to attenuation
as compared with the contribution of region B and also in the interest
of simplicity, this error is neglected.

Boundary-layer characteristiec,
AV 4 0

X U —
At 8* T +

N
AN
™~
~
. q—f——|—>te g -
5*
X 5
i t
Sketch (a) Sketch (b)

In order to handle the transitional flows which occur behind the
waves in a shock tube, some approximation for cg in the transition

region must be employed. Any of a number of assumptions 1s possible in
this region. However, in view of the meny assumptions already present
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in the theory, the least compliceating supposition will be employed in

this case; namely, an instantenecus transition is assumed and the value

of cy in the turbulent region will be taken as the value which would

be present had turbulent flow existed since the initiation of flow. In
other words, at the transition point the local cy changes discontinuously

fram the laminar to the turbulent value and the value Eo = O +then applies

in both laminar end turbulent regions. This assumption was used in the
logarithmic transitional curve for steady flow of reference 19. Figure 3
compares the integrated skin-friction coefficients of reference 19 with
the curves obtalned by the various power laws and the foregoing transi-~
tional assuniption. The agreement appears to be very good.

A simple compressibility correctlon will be based on the intermediste
temperature or T' semiempirical method. This correction, expounded in
reference 20 for laminar boundary layers and in reference 21 for turbulent
boundary layers, assumes that the Incompressible skin-friction relations
apply to compressible flow 1f the properties of the compressible flow are
taken as some intermediate value between the wall and free-stream values.
Thus, 1f the relation

n+3
cp=—H =T (24)
1.2 v
=p

n

epplies to a steady Incompressible flow, then
2

T n+3
cp' = ¥ . Fn<-U— E) (25)
1, y!
Pt

Fo

will apply to & steady compressible flow for a certain cholce of the
primed state. The following values of the intermediate temperature T'
are given (see refs. 20 and 21):

For laminar flow:

1 T
%=1+o.o32M2+o.58?‘"-1 (262)
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For turbulent flow:

T
% =1 + 0.035M2 + o.h5<—T‘1 - 1) (26p)
It may be shown that for an arbltrary reference state, which may be
elther well or free stream, equstion (25) may be put in the form
_ 2 o+l 2
_ Tw _ U n+3Tn+3u| n+3
2
_.2
y .\ =
cp = Fn(; 5) {n (270)

If a temperature-viscosity relation of the form

p[T\®
;T T At
is assumed to apply, then the steady-flow compressibility correction Oy

becones
t1-2m
o = (T> aE (28)

IIII

It is assumed that this T' method is also applicable as a compres-

sibility correction for the unsteady-flow skin-friction coefficients.
Compressibility corrections in hot and cold gas O are plotted against

shock pressure ratio in figure 4 for an air-air shock tube. The value
w = 0.8 has been used to compute these curves. :

The results of this section may be summarized by the followlng
expressions for skin-friction coefficient:
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N
L -1
2 2
{er)p=1 = 0.T18{1 + 1.469 % (% g) Q
L 1
2 2 U 2
(Cf)n=7 = 0.0581 1+ 77- m (;- E) 97 > (29)
L .1
8 y 8
- 2 _ B Vhu
(cf)n:l} 0.0186({1 + 13 By - ) <v g) O3
/
where
n+l 2

{n

SAC

Evaluation of the Linearized Attenuation Expressions

The basic linearized attenuation expressions derived in reference 1

are sumarized in appendix A.

The followling expressions result from the

first identity and subsequent substitution and masnipulation of the per-
tinent equations from the appendix:

Pys - Pgo - Pys - Pp +'Pf - Pe + Pe - Pp + Pp - Ppo (30)
8¢ 8¢ 8¢ ‘g 8¢
gl 5
PVB'PBO_l d_ dﬁg-Ma uﬂs-Mﬁ PBO'PGD y -1 fao PBO"PGO
ag D J; fp,8 __ms'Mg-l+¢Q’Bd4g-Hﬁ+lPﬂo+QB°+ 5 - 2 v $a,8lce,plE) at +
_ &) -
t [ o
1 a My+n PFpo+ Q9o 7 -1 8o Pgo - P,
3 e re 5 wa e Puafena(t) at (512)
] -1 -
a0
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Pys - Ppo 1 ta 1 ta
Since
Pys - Ppo - % 8 Pyg - Ppo (32)

Pgo &80 8¢

(see ref. 1) the following reletion results

Pvs - Pgofy % 1) T fnga*. d¢ + T fgd ae
Py = = c + c +
P[So \2 ago D B,m o f,B,m B,n Kgﬁ* f,8,n

*
f"Kga, gd

To,m J cf,a,m &€ + Ig,n f % CEya,n 48
o] KEy

(33)

in which the subscript m applies in the laminer range 0 < gﬁ-;ﬁ < gm’ B*
and the subscript n applies in the turbulent range ga, 13* < §a,,5 < &3-
The value of Kk 1is deflned as gd/g* for Eg¥* > gd and as 1 for ¢g¥* < gd.

The total linearized attenuation 1s thus made up of the sum of the
effects of regions o and B. This relation may be expressed mathematically

as
Pyvs ~ Ppo _ <va - PBO) + Pys ~ PBo) (34)
Pgo Pao /o Pgo /B
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- B £
Pvs ~ Ppo} _ 7y 2 1 5o d
(o) it ) mn v ren [ et

(35a)

*
Pys “ Pgo} _y B8 1 fngﬁ fgd
< Pgo )ﬁ 2 agy D T8,m °%,8m o PB,n NEB* °fBm “

(35b)
Now, with cg expressed in the form
2 _ i n+l-2m
o P T e
or
_ .2
or,n(8) = Gnnn<§ g) " (360)

integration of equations (35) results in the following equations. (The
subseript X designates either region « or region B.)

..._2.3 mHl - -2 n+l o+l
Pvs - Ppo)  .z% Liim*3. 0 (U) T3 ni3 o U) M w3 ()5
( Pgo )X,m,n 2ag, D r““m+1(}mﬂm(v.) (ng) * Ia +lGnnnv g) (g)
%
2wl w2

2 o+l oL
-2 a5 oL -
n+ 33U v\ F3fE cg¥\ot3 ] fa 1\ n+3
Fofefa 5T 1<; v) <T> [l ) (K Ve eon
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Rearrangement of terms of equation (37) produces
- _23. -l 2 m-n
Pys ~ Pgao 1fent} o7 & Ppo 23U Ve ml-3 m+3 a.wl mt3 n+5)
(EIT—)X,m,n E(T> B n R Y, ‘L *
2 o+l E%
; - —3 n+3 *
e 5223 L)) - () o
x

oL 2 mEl 2(m-n)

), ] T ot ] o

4

where

- 2
U-x Veo m+'5
X

&xm = =7
S (39b)
mHL
m+3
_ 7 B Pom + 3 §_d
Tm 2 agy D, m...lPXmeZ
p,

Note that fy, 1s & function only of the shock pressure ratio Pﬁ o /pw

and the value of m for any region X. The term 8ym Yequires in addition

a temperature-viscosity relation which may be either en exponential type or
some other form, such as the Sutherland equetion.

For the case of no transition when the flow is either completely
laminar or completely turbulent, equation (39a) reduces to

m+l L
Pyg = Ppo _ ()MB a'mD)
D

P, Voo

Extan e
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or

nt+l 2

Pys - P n+3 fa D\ B3
% = - (%) <L> Exnn (ko)

Yoo

The attenuation in this case for a given initiel value of PBO /pw is

obviously dependent only on the two parameters expressed as hydraulic
dismeters of shock-wave travel 1/D and shock-tube Reynolds number

86D Voo
For the case with transition three parameters are required to
describe the phenomenon at a given initial value of PB ofPeo? the third

parameter is the transition Reynolds mumber R* and enters intoc the
snalysis in the following manner:

* *voo

When equetion (41) is substituted into equation (39a), the linear
transitionsl attenuation relation becomes:

w2l mL g R
Dys ~ Ppo o5 fap\ =3 8, y 3 W3 m3(; 8D\ 5, w3
( Peo )‘X.,m,n 5) <_) ngnXm 52 ;: g—‘ (R*) 5 r () +

vw
Byala |1 - (% = %)m (R*)n_'f?(% -"i’) (e)o*3 (42)

where the term ¥ ¥ L ig a function of P /Peer Thus, at a given
T Vo £g o

value of Pgo /pw the linearized sttemuation is a function only of I/D,
a,,,D/voo, and R¥*. '

The sttenuation functions Bym? the compressibility corrections

Qv 804 their products are presented in teble I for shock pressure

ratios from 1.0 to 20.0 and for m equal to 1, 7, and 13. It may be
seen by inspection of equation (L4O) that, for given shock tube 1/D,
Reynolds number a.wD/vm, and no transition, the attenustion contribution
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of the region X is directly proportional to the product (Qg)xm- In order

to demonstrate graphically the behavior of these compressible attenuation
functions, they have been plotted in figures 5(a) and 5(b). The magni-
tude of the contribution of region B to attenustion increases monatomically
with increasing pressure retio, is alwsys negative in sign, and thus tends
to increase attenustion. On the other hand, for low pressure ratiocs the
contribution of region a tends to increase attenuastion; sbove a shock
pressure ratio of sbout 5.9, the trend is reversed and region o contri-
butes compression waves that tend to decreasse attenuation. This reversal
is discussed more fully in reference 1.

When no transition is considered, the attenuetion function for the
entire flow field is found by adding the contributions of regions o and B.
For the cases where the profile exponent m is the same in both regions,
the total campressible attenuation function has been computed and is
shown in table I and in figure 6 for values of m of 1, T, and 13. This
function is given as

-1
m+l 2

- w3/, \IH3
EZEE——-ES Q%) (E;B) = (98)q,m + (9)g,m

The results of using the methods of references 1 and 2 are also shown
in figures 6(a) and 6(b) for values of m of 1 and 7, respectively.

For the laminar case the curve in figure 6(a) representing the
method of reference 1 falls far below that of the present report, pri-
marily because of the importence of the neglected unsteadiness effects
as discussed in the introduction. The results of reference 2 are also
below that of the present report (approximately 25 percent for shock
pressure ratios from 4 to 10) and show better agreement at higher pres-
sure ratios (only 10 percent below for a shock pressure ratio of 20).

Agreement between the methods of references 1 and 2 and the present
method is better for the turbulent case (m = T; fig. 6(b)). The neglect
of unsteadiness has a smaller effect upon the results of reference 1,
although the effects of compressibility still give significant devia-
tions at shock pressure ratios near 10. The present results and the
results of reference 2 are in agreement within less than 15 percent for
‘shock pressure ratios up to 10 and then diverge to a 20-percent varia-
tion at a shock pressure ratio of 20.

Figures 5 and 6 show that the cold gas contributes only a small
part of the total attenuation for pBO/p°° < 20. At Pao/Pw = 20 +the

relative a contribution is larger than that for PBo/Pw < 20; however,
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it is only about 4 percent, 15 percent, and 25 percent of the total for
m=1, 7, and 1%, respectively.

Evaluation of Nonlinear Attenuation Expressions

The expressions derived previously are based on a linearized or
small perturbation analysis. However, for many conditions encountered
in the shock tube, the attenuation is no longer smell. In order to maxi-
mize the totsl avalleble experimental testing time, most experimental
work is done at values of 1 nearly equal to the total length of the
low-pressure side of the shock tube. At these large values of 1 the
shock strength often has decayed markedly from 1ts velue for smsll 1.
Consequently, relations for the attenuation under these conditions would
be very desirable.

An spproximate method to obtain the attenuatlion for the cases where
the small perturbation analysjis is invalid will be described. First,
conslder parameters P and @ which are related to P and Q by

>

i

Lae)

]
e
5 [t

> (43)

o>
i
)
]
Rl
Tl

J

(The paremeters § and a of this report are identical to the param-
eters P' and Q' of ref. 1.) When equation (43) is substituted into
equation (60) of reference 1, the following equations result:

1 &b

B¢ 5t

€ -18 1%, 1380 (kha)
1 6@ 7 &a; p ot T ac Bt

aeﬁ‘t
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[1 & >
8¢ &t TZT M. -1
. =5—a-Ucf Ey-l)MI-J]M+NPr 5w - Taw (kho)
iB_Q' Dae T
8¢ 51:
1 oP
8¢ &t ¢§
. =%Ucf (khe)
1 3Q
o= a

As discussed in reference 1, the changes in B and § eare evident
in changes by wave motion of velocity and pressure but do not indicate
the various changes in entropy. For example, if equation (Mla) is solved

for %p/p,

5p _ 7 Be[BF , BQ (45)

The value of P 1s assoclated with waves moving with the flow at
a velocity of u + a whereas §@ is associated with waves of the opposite
family moving at a velocity u - a. Now, for the linear attenuation
theory it 1s assumed that reflections at the shock wave and the devia-
tion in entropy rise across the shock wave may be ignored; that is,
Qs = Qg = Qgo or BQys = BQys = O. Consequently, an alternate form

for the attenuation expression is

Pyg “ PRo 7 B¢ ) +§ +@

z (46)
P Pgo & [\% /o 8¢ [reflection 2¢ /g

where the three terms on the right-hand side of the equation represent,
respectively, the contributions of region a, of the wave generated

in region B and reflected at the entropy discontimuity, and of the B wave
generated in region 8. Consider now the last term only. The incremental
change sP along the characteristic is then
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A t A t

5P\ _ Vv 1 8P 1 f v ~

°fY = = 2= 5t = = U 5t b
(%)ﬁ *-/;;f ag Ot D tp “2f%,p ()

A change of varisble may be made (eq. (21) of ref. 1) to & since

OMS -MB

U8t= L
O'MS—MB-l

ag

Efi) =5f§(tV) e - eyt
ce/p D Jg(vg) Me-Mp-1 T

B £ Mg -
g} - L - s -~ Mp
@), -3 [ w0 a0
~ g _
5_1’) -1 j‘ af oMy - Mg /?%g Paeg g ds (46b)
/g D Jo OMS-MB-]_\I‘B >
Substituting equation (45) into equation (48) yields:
Pys - Ppo <5P) 7 % 1 fﬁa_
— =z =& == K(t) Tpe at (49)
Pgo >B,§ p/g,p 2 aDdJg B°f,B

In equation (49), the left-hand side represents the pressure per-
turbation et the shock wave due to the wave generation only along the
forward running (slope of u + a) characteristic. For a complete
linearized trestment K and I‘B may be teken outside the integral and

equation (35b) mey be employed to obtain:
(552) (50)
P/

€a Dyg - D
_ 8¢ 1 _ Vs po
(%?)B ? - ? 5 KPBA/;) Cf’ﬁ o = K<-_—P—_>
] BO B

PR
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Thus, K is the ratio of the contribution of the waves generated
along the forward running characteristics to the total waves generated
in region B. The remalning portion of the attenuation contribution of 8

results from @ waves reflected at the entropy discontinuity and will be

deslgnated by (EE A which is equal to

P/p, a8

(@) o= (x- K)(p"——S _ PB°) (51)
P/p, a8 Pao  /p

The velue of K is plotted ageinst shock pressure ratio in fig-
ure 7. The fact that K does not depart significantly from 1.0 means
physically that the principal contribution to attenuation in region B

arises from the P waves. Since figures 5 and 6 have shown region B
+o0 have a much larger effect on attenustion in general then region a,
it is obvious that the theoretical dominsting factors for attenuation
are the P waves of region B. This conclusion has been discussed pre-
viously in references 1 and 2.

Since the P waves of region B dominate the linearized attenuation
solution, it is next assumed that & correction for the linearized so;:ution
mey be found by operating only on the P waves in region B. Thus P waves
generated in region o and transmitted et the entropy discontinuity as well
as the Q waves genersted in region P and reflected at the entropy dis-
continuity will retain their original linear or small perturbation values
even though the sttenustion is no longer smell. It is further assumed
that region B may be subdivided into a nunber of smaller regions in each
of which the linear attenuation relations for $ are valid. This treat-
ment is illustrated in figure 8. The arbitrary interval Al determines
the x-wise extent along the shock wave of each of the reglons designated

@, @, « « « « Each of these regions 1s bounded by the shock wave

and two fluid particle paths where each fluld particle velocity is equal,
respectively, to that generated by the shock wave at the beginning of
each new interval. The inviscid flow inside each of these regions is
considered to be constant; and, consequently, there is a small discon-
tinuity in the inviscid flow across the particle-path boundaries assumed
in the model. These discontinuities can not, of course, exist in the
actual physical flow which reguires & continucus variation throughout
all the regions as well as reflections from the shock wave. The errors
introduced by the assumption of constant quantities in each region are
not considered to be large and should be of spproximetely the same order
as those found in the famlilier steady-flow graphical characterist:.c
solutions of finite mesh size.
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In order to simplify the computatlional procedure, it is assumed
that for a given reglon the slope Sx/St of the P characteristic and
of the shock wave are constant both inside and outside of that region.

Thus, in figure 8, when the P contribution of region @ to attenua~-
tion between Al and 2 Al 1is computed, the assumption is made thet

the characteristic 6,7 and the shock path 0,1 may be extended tq inter-
sect at point 2. (Numbers refer to points in fig. 8.) The corresponding

correct regional characteristic line and shock paths are 6,7,8 and 0,1,8
which are shown 1in this illustration as intersecting also at the same
value of x as 2. This intersection at the same value of x 1s only
an 1dealization and is not the true physical picture in general. How-
ever, since the attenustion effect (generation of P waves) falls off
rapidly with distance behind the shock (similar to the fall off in local
skin friction with distance back of a sharp leading edge in steedy flow),
the contribution to attenuation in the interval from Al to 2 Al due

to generation along 6,7 is much less than that due to generation along

7,8; thus, small errors in the location of 6,7 will result in very small
errors in the attenuation at 2 Al. This assumption for establishing
the intersectlon points of the characteristics and the shock wave down-

stream from a reglon ® wlithout knowledge of the downstream shock-wave
attenuation permits the easy computation of the influence of region @

for all downstream shock locations.

When the regionsl spproach described shove i1s gpplied, the attenua-
tion for the first Interval Al 1is identical to the complete linear
approach. Thereafter, however, the various second-order effects are

felt. The effect of region @ on attenuation of the shock during the

interval from Al to 2 Al d4iffers from 1lts effect In the basic linear
theory because of the convergence of the particle paths since Ugp < Ug.

This may be shown as follows. From equation (48),

T
B Er[ oMg - M
<;E) =% f 7<GM T ?1) °sfp,1 & (52)
€/1ig Eg \'s "B T T/x
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The numbers refer to the points on figure 9(a). In this figure the

lines 5,1, 10,11, and 6,7,2 are drawn with slope (U + a)y; the lines 7,10

and 0,9,1,11,2 with slope Ugy; the lines 0,5,10,6 and 9,7 with slope Ug;
end the line 1,7 with slope Urr. Therefore, £ =9,7 = 0,10 = &10-

o) | _
g |1 B

6

Thus,

vl

f10/ oM - Mg
f W - T) oo &
t6 I

/
_1f Mg - Mg fﬁs ae - fﬁlo .
D("Ms - Mg - 1)1( 0 e,z %8 0 °sf2,1 &

(53)

Thus, the P contribution of region @ to attenuation between 1
and 2 is (from egs. (45) and (53))

55) y B¢ g6 Koo & fﬁlo

Sp =2 _€ £ - KT dg

(PB I,11 to 1o 2 D \Jo P71,8 0 BoL,B
PB/1,0 to 12 \FB/I,0 to 131

The substitution of equa,tion (k0), with g, replaced by gn, into equa-
tion (54) yields
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| e e
D o}
B2 o~ o) I - (8
_ 2 o+l n+l ndl
~(u02):(52) 3 (‘%)m5 - <%l')n+5
ol o+l

_[(® Y E)rM (55)
Poo/7 Az |\'1 1

where (:—P—) is the linear attenuation of a shock due to § effects
®/T,Al

over the initial interval Al in region @

The relationship between 137 and 17 is derived in appendix B
and is

1 1
! S Zt 2 1 (56)
Lo i1
Consequently, N
n+l ntl

Po/I,1; to 1p

A ~ nt+3 ntl o3
@) B P
Po/I,10 to 15 N®/T,aL|\T L

|
Ity
P
-
>
o~
P
Ny
\___‘3/‘
d
N
1
_sh
~
N
YT
B o
]
\.____/
4
W

(57=)




NACA TN L3h7 33

which for equal intervals Al becomes

|
. N [z o+l
(EE) = (@) onts _ (ZI)n+3
Po/I, 11 to 1n \w/I,A
3 3 = el (5Tb)
I N i
Poo I, to 25 Feo I,AlL

J
In this form the nonlinesar attenustions cen easily be computed.

In this manner the influence of region @ on attenuetion at any

desired value of 1 may be computed once the attenuation et 1I; has
been found. The influence of region @ is found in a similsr msnner

by shifting the effective origin of the coordinate system to 13 and

s
finding (—P-) for the attenuated shock strength at 1;; that is,
1T

2 nel
55 _ [ _fa gD\ (1o - 17\2F3
O DN ey o
®/11,11 to 1p ©/TT,A1
Bl ntl

(85\ ) (813) (13 - Z:L)n”_3 (Zn)ﬁl%(B -y 1)”5
S _ (% - T - -2 \
Peo)II_, 1o to 13 \Pw/IL,AL l2 - l2 -1

(58p)
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or for equal intervals of Al,

\
~ ~ ntl ntl
(?2) - (% ont3 (ZII) n+3
Pe/11,15 to 13 \T®/IL,alb
« R | neL n+l & (58e)
R /N i
Co/II, 15 to 1y \o/TI,AL
J

The total nonlinear attenuation gt a distance 1 from the diaphregm
statlion which has been subdivided into several intervals Al is then
expressed as the sum of the linear contributions of region o and the
reflections from region P added to the nonlinear contributions of region B.
The following expression 1s obtained for the nonlinear attenuation:

2 =+l mHl

T BE3f,\m3 el ey ~ mHL m+l Bl mHL
et o) 6P g (808 ]
ml ztl ml m+l ' .

a3 _ o3 B e -y
SR NN LA

ml meL .

l:z ;tAz)nH-B _ (z -Aez Al Zn)nﬁ{l .. .. (EE)N_Z/AIAI (552)

. ml
RSN
Poo Foo o,m K \Pw I,Al -
N= _zi R 1=1-n+ézl m+l m+l
_ (E’_Il S (i)m+3 _ [:(i _ 1)Z1£lm+5 (59b)
N-I \Po/N,A1 i=1 .

where 1 18 the index. -
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Second-order attenustion in the presence of transition may aslso be
treated by this regional system. The contributions of o and of Q
and S in B are still treated as entirely linear but including transi-
tion. Equation (39a) applies in 1ts entirety to the o contribution;
and, when the first term on the right-hand side i1s multiplied by 1L - K
and the second term by 1 - K, the resulting equation gives the Q
and S contribution of region B.

The transitional ? contribution is treated as follows: ILet 1%
be the position of the shock at which the transition in the flow behind
the shock first affects the shock. The wave diagram for transition is
shown in figure 9(b) where for illustrative purpcses it is assumed that
1* = 2 Al. Now, in order to retain the facility of computation afforded
by the regionsl system with equal Al and a constant 1¥*, the value of
R¥ will, as a result, vary slightly from region to region. Since

* * .
(R_-x-') = <% §_*) the magnitude of this variation may be found by examina-
/N /N

tion of figure 10 which shows the parameter

"[__]’ i Poo, std
v ¥ N P

plotted against shock pressure ratio. From this figure it is evident
thet, if the shock pressure ratio should sttenuate, for example, from 20

to 15, or from 5 to %, there would be sbout a 1lO-percent decrease in

R*¥ for & given 1¥ and pw’ std [Peot The errors introduced by such a

variation in R¥* are not deemed to be important enough to force the
sbandonment of the equal Al computing scheme. For the remainder of
this paper, R*¥ will be taken as the value of the transitional Reynolds

number in region @ The Eﬁ contributions for the transitional case

are expressed by the following equations which are modifications of equa-
tions (57), (58), and (59) (the subscripts m and n refer to condi-
tions before and after transition, respectively):

2 mtl

D _(a 8D | 3 (A \S
(%>N;m,AZ ) (gmom)N(E—) (—D—) (c0e)
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-2 ol
P~ Cen() .
&nfln - (6ob)
<p°° N,n,Al ( )N Voo D
nj% ZEL oy
@) @) o () )
(P“' N,m,(1-81) to 1 \P/N,m,Az Al Al ( )
(612)
for
L <N -1+ lf
Al Al
n+l ntl
o3 == nt+l
A A n+3 n+3 o+l
§12> - @> <£7 -~ N+ 1) - (BIT - ) (ZN)n+3
Peo N,n,(1-Al) to 1 ®/N,n,Al
(61p)
for

Al B Al

Numericel Evaluation of Nonlinear Theory

Several computations to determine the nonlinear correction factors
for attenuation were performed for values of the interval AJ/D of 3.5
and 1k. These particular values were chosen because they represent
increments of Al of 0.5 foot and 2 feet for the shock tube employed in
the experiments to be described in a later section. Typical curves
resulting from such computations are shown in figure 1ll. The ratlo of
the nonlinear attenuation to the linear attenuation is plotted against I/D



NACA TN L3h47T 37

for an initial shock pressure ratic of 4 and a value of 3"’2 of 0.01 X 106.

vm
For values of 1/D > 50 the curves for éDZ = 3.5 and 14 agree within

sbout 1 percent for the laminar case and within sbout 3 percent for the
turbulent case. The low value of amD/vm accentuates any variations

between the two computations; thus the case illustrated gives a discrep-
ancy near a maeximum rather than near a minimum. Exemination of several
such pairs of curves resulted in the conclusion that the slight ‘Increase

in accuracy obtained by using %_Z = 3.5 did not justify the fourfold
increase in labor. Consequently, the computations with At _ 1L are
D

used to predict the nonlinear attenuation for 1/D X 50.

It is obvious that the finite size of Al will introduce errors
in the ratios NIm,n./T-m,n which are largest near 1 —» 0 since the non-

linear and linear attenuations are identicsl for the first intervsl.
(See fig. 11.) However, the errors introduced in the attenuations Nim,n

themselves are small since Im,n -0 as 1 - 0. To represent the physi-

cal flow in this region accurately would require that Al approach O.
Interpolation formmles giving acceptable sccuracy near 1 — 0 are assumed
to have the form

\

Nonlineer etbemustlon _ (genstant)(l)
Linear attenuation

> (62)
0.8
Nonlinear attenuation _ (Constant) i
Linear attenuation
/
for (0 <= 56) for laminar and turbulent flows, respectively, since

the linear attenuation is proportional to (1/D) 0 ?  ana (z/D)O‘8 for
the laminer and turbulent flows.

The constants are chosen to match the computed curves for ‘%Z- = 1L

at '115 = 56. From figure 11 it is evident that the errors resulting from
the application of this interpolation formula are less than the afore-

mentioned errors at —:J'- = 50 and are thus acceptgble.
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In order to obtain curves of the transitional nonlinear to linear
attenuation ratio NL7 p/L7,T “for s constant velue of R¥ and several

shock pressure ratios, a cross-plotting technique was used. At a given
shock pressure ratio the values of NLq,T/LT,T were computed for several

values of the ratio Z*/D to Ay/ . Since each 1* represented an R¥,
the resulting ratios for each 1/D could be plotted against R*¥ for a
given shock pressure ratio. The values for & particular R* could then
be read from these plots to produce & master plot with a common value

of R¥

Plots of the ratio of nonlinear attenuation to linear attenuation
are shown in figures 12 to 15. In these curves region o is always con-
sidered as. having turbulent flow whereas four cases are considered for
region B: namely, (a% leminar flow, (b) turbulent flow, (c¢) transition
with R* = 1.25 x 106, and (d) transition with R* = 2.5 x 106. The
cross-plotting parameters are shock-tube Reynolds number am.'D/v°° and
length of shock-wave travel expressed in hydraulic diemeters Z/D.
the lower pressure ratios Dpo/p,s curves for more values of aq,D/v°° are

shown than at the higher pressure ratios. This limitatlion resulted from
the considerations of the restrictlion of the validity of the theory to
an ldeal gas, the region of experimental data of this report, the most
likely general region of experiments for other facilities, and priority
for computing effort. Since figures 12 to 15 are the result of cross
plotting, the accuracy is assumed to be ebout 2 percent.

An analytic closed-form investigation has been made of the fact
that the limit of NLq,%/L7,l approaches O when PBO . &pproaches 1

whereas the limit of NL7,7/L7,7 approaches 1.0 when PBo/Pm

approaches 1.0. This second-order analytic solution for wesk shocks
indicates that g velue of m =3 in B is a critical velue; 8ll solu-
tions with n > % epproach a limit of 1L and those with n < 3 approach
a limlt of 0. Of course, in all cases the ebsolute value of both the
linear and nonlinear attenuetion must approach zero as Pgo/Pe

approaches 1. Since o has only a secondary effect on attenuation end
since the expansion fan has been replaced by a "negative shock," the
refinement of transition in region o was not deemed necessary.

RESULTS AND DISCUSSION

Experimental Apparatus and Procedure

Extensive shock-attenuation data were cbtalned in a high-pressure
shock tube 2 inches high by 1% inches wide in the Langley gas dynamics
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leéboratory. This shock tube is the same &g that described in reference 1
with added velocity-measuring equipment. Light screens placed at eight
stations in the low-pressure section masde possible meassurements of the
complete distance-time history of the motion of the shock wave for a wide
range of shock pressure ratios and flow Reynolds numbers. Figure 16 shows
schematically the arrangement of the shock tube end associsted equipment,
and the low-pressure section with associated optical systems is illustrated
in figure 17.

Air at room temperature was used in both high- and low-pressure sec-
tions. The normal arrangement for high-pressure section air supply and
low-pressure section vacuum systems 1s shown in figure 16. In a limited
number of low-density runs, evacuating the high-pressure section wes nec-
essary; for these cases, an auxiliary vacuum system, identical with the
normal low-pressure system, was substituted for the pressure system shown.
Conversely, certain high-density runs required pressurization of the low-
pressure section; in this case a simple pressure system replaced the nor-
mel vacuum system. The pressures in both high- and low-pressure sections
were adjusted for each run. All data were obtained from tests where the
diephragm was punctured by & hand-operated plunger. In this way diaphragm
pressure ratioc and consequently, theoretical shock-pressure ratio PBo/Poo

were closely controlled. Bourdon-tube gages were employed for pressure
measurements, and the vacuum systems utilized a modified barometer for
pressures in the range from 4 inches mercury sbsolute to atmospheric
pressure, and a O to 100 millimeters mercury sbsolute pressure gage was
used for the low pressures.

Static pressures were structurally limited to 1,000 pounds per square
inch gage in the high-pressure sections and 250 pounds per square inech
gage in the low-pressure sections. A vacuum limitation of sbout 0.0l stmos-
phere absolute pressure resulted for the low-pressure section because the
light screen systems became unresponsive for the low pressures. In the
high-pressure section, low pressures were limited by failure of diaphragnms
to burst properly.

Diaphragms made of thin metal foil were used for the low-pressure runs.
The most useful materials were soft aluminum foil, 0.00l inch thick, and
soft brass foill with a nominal thickness of either 0.00125 or 0.0015 inch.
With these materials, 1t was possible to obtain good bursts for pressure
differences across the disphragm ranging from 10 pounds per square inch to
100 pounds per square inch. Good bursts for the range of pressure differ-
ence from 100 to 1,000 pounds per square inch were obtained by using spring-
tempered brass shim stock with thicknesses ranging from 0.008 to 0.021 inch
and scribed to various depths in an x-shaped pattern along the diagonals of
a rectangle representing the shock-tube cross section. When punctured
under pressure, the diaphragm split along the scribe marks, and the four
triangular pleces of material folded back against the wasll and presented
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minimum resistance to the flow. All other conditions belng equal, runs
where this type of burst took place resulted in minimum shock attenua-
tion compared with attenuations resulting from bursts where metal or )
acetate-type disphrasgms were shattered. Material thicknesses and scribe
depths were determined so that puncturing pressure was just below the
pressure at which the diaphragm would have failed. The unseribed foil
diaphragms used for smell pressure differences split along the diagonals
in this same way when punctured at the center, and optimum results were
also generally obtained with these diasphragms.

Shock velocity measurements were made with miniature schlieren systems
located at eight positions in the low-pressure section. Figure 16 shows
schematically the position of these systems. The optical and electronic
systems were essentially the same &s those used in reference 1, in which
the signal generated in a photomultiplier tube by deflection of a beam of
light upon the tube was amplified and used to trigger a thyratron. The
thyratron output pulse, in turn, started or stopped & counter chronograph.
Figure 18 illustrates one complete optical system, including the chassis
containing the photomultiplier-amplifier-thyratron circuit, which is shown
in figure 19. Wooden shields were employed to keep stray room light from
falling upon the photomultiplier tube.

For the multiple systems employed herein, each thyratron output pulse
was channeled to two chronographs. These chronographs indicated shock
traversal time between any two adjacent stations, and any one of three
types of chronographs, 8 megacycles, 1.6 megacycles, and 1 megacycle,
was employed for each position. The overall time interval between the
first and last stations was measured with a 100-kllocycle chronograph
for a check upon the sum of the individual measurements.

Reduction of Experimental Data

The experimental shock-wave pressure ratio was compubed from the
measured time interval At for the shock to pass between two measuring
stations a distance Al sapert from the relation

Pys _ 2y [(Mu/at)® gy -1 (65)
P, 7+ 1\ &, y + 1

This value was assumed to represent the shock strength at a position
midwey between the two stetions, and the maximum error was estimated to
be less than 1 percent. - The theoreticel shock pressure ratio PBo/Pm

was computed from the diaphragm pressure ratic just prior to burst. For
an ideal gas the meximum error in pg, Wes estimated at O.lp, (for a
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shock pressure ratio of 10 at p_ =.0.005p°°, s'bd)i and the meximm devia-
tion in the ratio of computed (p./p to true (pp/p was estimated
B/==/o Bf<w/o

to he approximastely 1 percent.

Comparison of Theory and Experiment

The general method of comparison between theory and experimént will
be to compare the measured and predicted asttenuation for particular values
of pBo/pm and a,mD/v‘,o on individual curves. However, it is of interest

to first consider a few typical curves where the data for a constant value
of PBo /pw but with varying values of auD/vm are shown on a single plot.

Such plots are shown in figure 20 for values, of Pﬁo/Poo of 4.0 and 10.0.

The experimental data are avereges of severel runs on a given day and the
nurber of runs for each data point 1s indicated on the figure. On some
runs in which the density change across the shock wave wes smsll, all

the velocity-measuring stations did not register because of variastions

in their sensitivity; and, as a result, there are gaps in the experimental

data. (For example, see fig. 20(b) at ;ﬂ = 0.005.

-3

One fact immediately evident is the nonrepeatsbility of some of the
data, even when compared on & daily average basis. An allowance for en
error in pB /pco of *1 percent in the experimental and deta-reduction

technique will bracket most of the cbserved discrepancy in the aversges;
but certain runs st very low values of a._,oD/vw still fall outside this

range.
If en atbtempt were made to extropolate & curve from the data points
to 1 = 0, an inflection would often be required in the curve between

1=0 and 1 =6 +to meke it pass through the theoretical value of
Pgo /Poo at 1 =0. In order to illustrate this point, connecting lines

have been drawn in figure 20 for socme of the vaelues of amD/ Voo Similar

behavior is found in the experimental data reported in figures 11 to 1L
of reference 8. Now all the sttenuation theories based on wall effects

da?vsg B
a2

or turbulent flow. At the transition point the theory of the present
APy /P

d'PVS Do
peper usually predlcts > < 0. Con-
d? leminar az transition

sequently, 1f this Inflection is to arise from wall effects, it must be

which are known to the authors predict > 0 i1n regions of laminar
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caused by transition. The interferometric studies of reference 16 have
found values of R¥* of about 1.kt X lO6 end 2.0 X 106 for PBO P, = 2

and. 2, respectively. Since values of R*¥ of the order of 0.5 X 106
are required to ceause an inflection at 1 = 6 for PBo/Poo = 4 and 10,
it does not appear likely that trensition is the cause of this inflec-
tion. This inflection will be discussed more fully later in this paper.

The unexpected inversion of Reynolds number effects for the lower
values of 1 should be noted. For example, at I = 5.2 and PBO/Poo = 10

the attenuation for a—“]i = 0,005 X 106 is ebout one-fourth that for

Veo
b
g“’—D- = 0.1 x 106, For the seme value of 1 and -E° = 4.0, the sttenua-
« 00
tlon for 8D _ 0.1 X 106 is ebout one half that for -iﬁ =1 X 106.
x -]

The. spread with Reynolds nurber of the experimental date at the
larger values of 1 1s also much smaller than would be expected on the
basis of the linear theories (refs. 1 and 2) which predict attenuations

1
- 5 - 5
et a given 1/D proportional to (%"LD-) and (ﬁ) ‘for laminar
[+ (-]

and turbulent flow, respectively. This behsvior has been noted by other
investigators (ref. 10).

Theoretical variation of p with @ <for values of

vs POO

Bl _ 0.01 x 106, 0.1 x 106, and 1 X 106 for pbo/bw = 4.0 and 10.0 are

Voo

presented In figures 21 and 22. These values are based on the theory

of the present peper. Leminar and turbulent linear and nonlinear
pressure-distance predictions are shown in figure 21(a) for PgofPe = k.0,

and in figure 2l(b) for Pﬁo/Poo = 10.0. The effect at larger values of 1

of the nonlinear correctlion is twofold; not only is there a marked reduc-
tion in the predicted attenuation when the attenuation is large but

' there is also a marked decrease in the predicted Reynolds number effect
on attenusation. The following teble based on figures 21 and 22 for

1 = 22 feet 1llustrates these facts:
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ym,cg(’;k)-(’;'.) for 8o oy rum.o:(’ -(h) for T80 .3

2, Pu J1ec P P P /1u20 P

Carvs FigTe m:-m-w%u- rm-vu.'l.ueuof%nf- B
0.0L x 106 0.1 x 105 1 % 108 0.0z x 106 0.1 x 106 1 x 106

7,1 2 L.kg 0.8 0.1T 2.62 0.65 0.10 -

7,7 o 2.30 1.5 - 6.10 3.8 2.k3 °

7,1 @ 1.09 N 16 1.87 .58 .10 -

xq,7 2 L39 1.0% e 3.2 2.50 1.83 o

> 2 1.09 %9 5 2.65 2.46 1.8 1.25 x 106

g,y 1.09 K- -T2 1.87 2.3 18 2.5 x 106

The nonlinear abttenuation predictions for values of R* = 1.25 x lO6
and 2.5 x 105 are shown in figures 22(a) and 22(b). Since, for these

velues of R¥, 1¥ = 0.122 and 0.2k foot for ;ﬁ =106 at :%@ = 10,

x co
the nonlinear curve for turbulent flow is nearly identical to that for
transition and the turbulent curve 1is used in the figure. These curves
end the teble indicate that transition at & constant value of R* appears
to decrease further the spread of attenuation with awD/vw. The discon-

j)
tinuous change in d L;:& at 1* 1is obvious. Another point of

interest is the predicted veriation of NIg7m at 1 =22, PBo/Peo = 10,
end R¥ = 2.5 x 106; the attenmuation is less for a,D/v, of 0.0l X 106
and 1 x 106 than it is for 8:D/Ve ©OFf 0.1 X 106. The completely laminar

flow of SwD _ 0.01L X lO6 and the nearly completely 'Eurbulent flow of

[=:]

;ﬁ =1 X lO6 result In salmost identical attenuations. The flow of
«©

:—'”P- = 0.1 x 106 1is mainly turbulent (1% = 2.kk) and, as expected, the
[+
attenuation is grester than for 3—“9- =1X 106. Thus, in thils case,

=]

trensition has resulted in an inversion of attenuation with Reynolds
number under g certain set of conditions. However, for R¥ = 1.25 x 106,

—— = 10, and 1 = 22 feet, the pattern of increasing attenustion with

decreasing aD/Vv, 1is once sgain evident.
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In figures 23 to 36 the variation of the average experimental shock
pressure ratio with distance is compared with the various attennation pre-
dictions of the theory presented earlier in this paper. The nominal
values of pPpo /pw range from 1.5 to 10 and amD/vw covers the range

of 0.005 X 106 to 15 X 106. The hydrasulic diameter of the shock tube
is 1/7 foot and the meximum value of 1 at which pyg /peo could be

determined was 171% feet; thus a maximum experimental velue of %% 125
resulted.

The marked improvement obtained from use of the nonlinear theory
when the predicted attenuation is large becomes evident upon inspection
of figures 23 to 36. The unusual behavior near 1 — 0 which was men-
tioned earlier cen new be examined more closely. For the higher values

of shock pressure ratio (8, 9, and 10) and low values of ﬁﬁ'i < 0.01 x 105,

0
the messured attenuations at the first station are much smeller than any
of the theoretical predictions of this report or of reference 2. In fact,

p a.D
for 5-E9- = 9.0 and . = 0.005 X 106, one set of averages glves a nega-
(2] o]
tive attenuation <P_vs_ > EEO-) of such size that even the estimated
o0 oo
L)

P
l-percent-error mergin is not sufficient to make P—VE < _Bo gt the filrst

[+ -] POO
station -é- = 36.6). In reference 9 it was also found that for high values
of PBo /pw the meximm shock velocities were greater than the velocity

theoreticelly computed for an inviscid fluid both with end without con-
‘sideration of varisble specific heat and gaseous Imperfectlons. Hydrogen
end helium were used as the driver gas and air as the low-pressure fluild.
The maximum shock velocity occurred at sbout LO to 50 diameters from the
diaphragm.

On the other hend, references L4 and 8 did not find any values of

%11 > -:EE-O- for values of Pgo /pm in the ssme range as the present
-] POO

experiments. These works proposed a "formation decrement” defined as
"the difference between the Rankine-Bugoniot shock strength and the
meximum shock strength cbtained after the formation distance.” (See

ref. 8, page 17.) This decrement was then attributed to the imperfect
diaphraegm burst producing & series of compression waves which eventually
coalesce to form a shock weaker than that for the case of a theoretlcally
perfect burst.
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For the lowest shock pressure ratios at the highest shock tube
Reynolds numbers, the opposite trend (measured sttenustion larger than
theory) is spparent. An extreme example of this is the attenuation meas-

P
ured at the first station for 3ﬁ =15 x 106 @and 599 = 2. (See fig. 25.)
«© 0
Three of the four runs used in obtaining this average value showed this
behavior, which is attributed to the formation process.

The processes giving rise to the behavior for Z/D -0 are not
understood. The experimental deta of this report generally show a trend
of decreasing va/PBo with increasing g@D/vw at the filrst station.

If this effect were to be explained on a viscous basis, it would appear
that an opposite trend would sppear; hence, the diephregm burst 1s prob-
ably the governing factor. The bursting phenomena are in turn governed
by the disphragm materials (weights and rupture characteristics) as well
as the pressure load. The disphragm opening time (time for the diaphragm
sectors to fold sgainst the well) was estimated by & method which has
previously been checked experimentally. No correlstion was found between
the opening time end the behavior neer 1 — 0. It was noticed, however,
that, in the experimentel runs which exhibited the most marked inflections,
foil diaphragms were used. On the other hand, some runs exhibiting very
little or no inflection also used foll diasphregms. Therefore, it does
not appesr that foil diaphragms are solely responsible for the inflected
data points.

Regardless of whether the maximum experimental value of PVS/Pu is

greater than or less than the ideal value, the behavior near the dlaphragm
station is not governed by wall effects but by the diaphragm burst and
the resultant three-dimensional flow first established. This highly rota~
tional viscous flow does eventuslly become essentislly two-dimensional,
with the exception of mixing and vortiecity et the interface between the
driver and driver gases. Consequently, any attenuation theory based on
wall effects cannot predict the inltial behavior near the digphragm sta-
tion. As the distance from the diaphragm station inereases, the ratio

of the influence of the initial bursting flow to the influence of the
integrated wall effects decreases; therefore, the physicael veriation of
pvs/p°° should approach the theoretically predicted sttenuated value

asymptotically as Z/D increases.

The experimental date of figures 23 to 36 approach the nonlinear
theory (considering transition) in a mammer very similar to that just
described. For high values of PBO/Pw and low values of qiD/vm where

the effect of the formetion process results in a significant inflection,
the deviation from the nonlinear curve persists to the larger values of
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P D |
1/D. For —£2 =10, 9, and 8 with == = 0.005 X 106, the formstion
P Vv

00 >

effect was so large that the experimental date never spprosached closely

the nonlinear curve for %-5 125. As amD/v°° increassed and the forma-

tion effect decreased, agreement between experiment and ﬁonlinear theory
improved both in convergence of the experimental and theoretical values

at a }ower”value of 1/D and in meximum deviation at the highest values
of .1/D.

The nonlinear curve for R¥ = 2.5 X 106 appears to agree more
favorebly with the data over most of the range of PBo/Pw' At the lower

values of PBo/Pm there eppeers to be a tendency for the date to depart

from the R¥ = 2.5 X lO6 curve and approach the R* = 1.25 X 106 curve.
The interferometric measurements of reference 16 indicate such a trend
of increasing R* with increasing PBo/Pw‘ This trend might also be

expected from comparison with steedy-flow experiments since the wall
cooling increases as PBO P, increases.

The comparisons of figures 23 to 36 between the nonlinear transitional
theory and the experimental data show that this theory is valld for the
prediction of experimental attenuation except for the lower shock tube
Reynolds numbers at the higher pressure ratios. These latter conditions
are those under which it appears that the shock-formatlon processes dom-
inate the entire flow.

As stated previously, errors of unknown magnitude were introduced
by the aversging of wall effects across the flow. The fact that the
present theory was able to predict fairly well the measured attenustions
over the entire range of shock pressure ratios and Reynolds numbers
(except near the dilaphragm) indicates that the errors introduced in the
averaging process are either not serious or else self-compensating.

The range of boundary-layer thicknesses in region B (which has the
predominant influence on attenustion) was determined by methods similar
to those of references 14 and 15 for laminar and turbulent flows, respec-
tively. In the experiments reported herein, with the shock 20 feet from
the diaphragm, the meximum boundary-leyer thickness veried approximately
from 0.006 to 0.25 inch for laminar flow and from 0.07 to 1 inch for tur-
bulent flow. When compared with the O0.75-1inch half-wildth of the shock
tube, the turbulent thickness was significant for much of the experimental
date. On the other hand, leminar boundary~layer thickness was generally
small. Thus the averaging process as used for this theory appears to
epply equally well to thick as well as to thin boundsry layers.

-
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Magnitude of Other Neglected Second-Order Effects

Since the treatment presented has considered only one source of
nonlinearity, it 1ls advisable to examine briefly the influence of other
neglected sources. The three most cbvious factors neglected are the
finite extent of the expanslon fan, the nonlinear effect of the wave
interactions at the entropy discontinuity, and the reflections at the
shock wave.

The effect upon attenustion of treating the expansion wave as one
of finite width with varying free-stream properties was calculated by
using the results of reference 1k for pressure ratios pﬁo/p°° of 1.6,

2.9, and 4.5 (§te of -0.6, 0, and 0.5, respectively, in the notation of

ref. 14). Computations were not made for higher shock pressure ratios
because the solutions in reference 14 did not extend sbove Ete = 0.6.

The laminar-flow wall-shear and heat-transfer distributions through the
cold-gas reglions given by this reference were used to compute the skin-
friction coefficient which was, in turn, utilized to compute the
attenuation.

Wheh the method of the present paper was used, 1t was found that,
for the three cases computed, the net change in attenustion through
gpproximation of the finité expanslon by the negative shock was precti-
cally zero for PBO/Pw equal to 1.6, -0.3 percent for pBo/p°° equal

to 2.9, and -0.6 percent for PBo/?w equal to 4.5. Although the con-

tribution of the cold gas was itself influenced by the finlte expansion
(up to a 50-percent decrease at the highest pressure ratio), the cold
gas contributes so little to laminar-flow attenuation at these low pres-
sure ratios that the error in assuming a negative shock 1s negligible.

For higher shock pressure ratios the effect of the finite expansion
cannot be computed. However, examinstion of figure 5 indicetes that, at
a shock pressure ratio spproximately equal to 6, the contribution of the
cold gas (with the negative shock) vanishes. At higher pressure ratios
the cold gas tends to decrease attenuation but this effect remeins small
compared with the contribution of the hot gas. At a shock pressure ratlo
of 20, for example, the effect of the cold-gas reglon has reached only
4 percent of the total. Thus, the finite expansion fan can influence
only & smeall pert of the total attenuation, and the assumption of a nega-
tive shock should glve reasonaebly accurate results.

The leminar boundary-lsyer finite-expansion-fan soclutions of ref-
erence 1t were also used to estimate the effect of the negative shock
assumption upon the attemuation predicted by reference 2 for the same
three pressure ratios. The errors in attenustion which erise through
the use of a negative shock are 1.4t percent at pao/p°° equal to 1.6,
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5.1 percent at Pﬁo/Pm of 2.9, and 4.2 percent at PBo/Pw of 4.5. In

thils case, the contribution of the ccld ges tends to decrease the attenue-~
tion at all pressure ratios of interest, the contribution for the negative
shock assumption reaching a maximum at Pﬁo/Pm equal to k4.5.

No means of computing turbulent boundery-layer flow inside & finlte
expansion are availsble. However, asccording to the linearized negative
shock approach of this paper, the cold-gas contribution is always less
than 16 percent for pressure ratios up to 20 and always less than 10 per-
cent for pressure ratios up to 10. (See fig. 5.) If the effect of the
finite expansion in turbulent flow is in the same direction as in leminar
flow, the cold-gas contribution, when a finite expansion fan is considered,
would be less than that for a negative shock. Thus it is assumed that the
effects of the difference between the finite-expansion and negative-shock
solutions for turbulent flow may be neglected, at least up to shock pres-
sure ratios of 10.

The influence of nonlinearities in the reflection and transmission
of waves at the entropy discontinuity wes celculated for shock pressure
ratios pBo/po° equal to 1.25, 2.0, 4.0, 6.0, 8.0, and 10.0. The non~

linearities involved required that the shock~tube Reynolds number and
station be specified in order to calculate the attenuetion for this case.
The case of &8 Pfv, egqual to 0.1 X 106 was chosen, and the attenuations

at 1/D equal to TO and 140 were calculated for completely laminar {n = 1)
flow and completely turbulent (n = 7) flow.

For the laminar case, & difference of sbout one-half percent was
found between linear and nonlinear calculations for the wave Interactions
at the entropy discontinuity for PBo/P of 10 and at Z/D equal to 140,

the nonlinear celculation predicting greater attenuation. Differences at
1/D of TO and at lower pressure ratlos were sma;ler and generally in the
same direction, except at a value of psofp°° of 1.25 where the nonlinesar

entropy result gave slightly less sttenuation than the linear result.
The deviations, which were smell in all cases, were also somewhat erratic
in their behavior.

Differences in the turbulent case were somewhat larger and ranged’
up to 10 percent for a value of 1/D of 14O and a value of PBo/ of 10.

This condition is attributed to the larger relative contribution of the
cold-gas region o to the total attenuation for turbulent flow. (See
table I and fig. 5.) Agailn, the nonlinear entropy calculation predicted
greater attenuation than the linearized except at a value of pBO/pm

of 1.25 where the trend was reversed. However, at the low pressure ratios
the deviation was less than 1 percent and this trend is not considered to
be significant.
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The effect of reflection of waves at the shock was estimated by the
following treatment: The unattenuated shock was assumed to be overtaken
by a single isentropic wave of strength equal to the total attenuation
for a given condition and station. The resulting one-dimensional inter-
action was computed and the strength of the shock after interaction com-
pared with the strength predicted by the linearized theory. These results
were computed for shock pressure ratios of 10 and k..

For Pﬁo/Pm equal to 10, the three cases were compared and the
results are given in the followling table:

BooD 1 Attenustion Percent difference
Voo D | No reflection | With reflection | 1T &btemuation
0.1 x 106|150 L; ; = -0.60 | Iy ; = -0.55 8
.1 140 Ly,7 = =3.5T7 Ly, 7 = =3.16 11
.005 154 | Ly 7 = -T-0 Ly,7 = -6.14 12
8D 6 1
The conditions of —— = 0.005 X 10 and > = 154 represent the condi-~
(-]

tions under which maximum attenuation would be expected for the experi-
mental range of this paper.

In all cases, the shock is slightly strengthened by the interaction,
that is, attenuation is decreased. This is a trend which is opposite to
that generally computed for the exact entropy discontinuity. For Ppo{Pe

equal to L, only one case was computed, that corregponding to the largest
predicted attenuetion, am,D/voo equal to 0.02 x 100, Z/D equal to 15k.

In this case, the predicted attenuation was Ezg—:—gég equal to -2. The
D

co

consideration of reflection gave Pvs ~ Ppo equal to ~1.8. The differ-
P

ence in attenuation was 10 percent, again in the direction of decreasing

attenuation.

In general, then, the effects of the entropy discontinuity and the
reflected wave at the shock which were neglected in the linearized theory
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tend to oppose one another and are of ebout the same order of magnitude
for the worst cases (turbulent flow, strong shocks).

For the pressure range of this report it has been shown in the pre-
ceding discussion that the two nonlinear effects having the largest magni-~
tude are of opposite sign. The effect of neglecting the finite expansion-
fan width is small for leminar flow and is also presumed to be small for
turbulent flow. Consequently, the neglect of these three effects, which
have a net influence much smaller then the nonlinear P effect considered,
sppears to be justified for attenuation. Although the aforementioned
effects are negligible for attenuation, they can sppreclably influence
the pressure, density, and veloclty distribution at points removed from
the shock. This behavior arises from the fact that the relative influence
of the P waves of reglon P decreases as the distance behind the shock
increases; the influence reduces to zero at and behind the entropy dis-
continuity. (See pages 33 and 34 and fig. 13 of ref. 1 for further
discussion.)

CONCLUDING REMARKS

The theory of NACA Technical Note 3375, in which shock-wave attenua-
tion is calculated by use of a linearized form of the hyperbolic system
of equations of motion and energy and through the assumption of equivalent
incompressible steady~flow friction and heat-transfer coefficients, has
been modified in the followlng manner:

(1) Incompressible unsteady skin-friction coefficients have been
determined by an integrsl method. The resulting unsteady incompressible
skin-friction coefficient is corrected for compressibility by a refer-
ence temperature method.

(2) A nonlinear regional approach has been employed to permit the
extensions of the theory to large attenuations. This approach modifies
only the forward running waves generated in the hot-gas reglon; these
waves are shown to dominate the attenustion process.

(3) Transition effects are considered. The method assumes instan-
taneous transition from leminaxr to turbulent flow. The Reynolds number
of transition then becomes a parameter of the attenuation problem.

The modified theory has been evaluated for a range of shock pres-
sure ratlos of generasl experimental interest. Curves are presented to
permit easy prediction of attenustion for shock pressure retios to 20
and & range of shock-tube Reynolds numbers. Results for the linearized
theory with all laminar and all turbulent flow are compared with results
of NACA Technical Note 3278, and the predlcted attenuations are found to
be In falr sgreement. '
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Experimental local shock pressure ratios have been determined for
idesl shock pressure ratios from 1.5 to 10 for a range of shock-tube
Reynolds numbérs and posltion from the diaphragm station.

Comparison of the modifled nonlinear theory using a transition
Reynolds number based on flow length of 2.5 X 106 with the experimental
results shows goocd sgreement except for the following situatlons:

(1) The highest shock pressure ratios at the lowest shock-tube
Reynolds numbers where the effects of the nonperfect diaphragm burst
are believed to dominate the flow.

(2) The lowest shock %ressure ratios, for which a lower transition
Reynolds mmber (1.25 X 100) appears to give better agreement.

The effects of considering a finite expansion fan, the exact inter-
action at the entropy discontinuity, and reflection at the shock wave
(all of which are neglected in the present treatment) are calculated for
certain cases. The net effect of these three contributions 1s shown to
be small compared with the nonlinearities accounted for in the stepwise
regional calculation.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 25, 1958.
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APPENDIX A
SUMMARY OF LINEARIZED ATTENUATION EQUATIONS

The chenges in the characteristic parsmeters P, Q, and S/R as
a function of local skin friction are derived in reference 1 and those
appropriate to shock-wave attenuation are summerized in this appendix.
Subscripts refer to positions on the wave diagra,m of figure 1.

Pe - Po _Pg = Pao _ Mg+ n 1 t4
s T e —¢P,@Mm+n+lDfo cr,al8) at (A1)

Pys - Pr Mg - Mg 1 PO
LT S = f cp, p() dt (42) :
ae P oig -Mg - 1D Jy, TP |
Q'f'Qg_Qf‘Q@_ Mg - Mp lfgd
fe = ae = ¢Q)B (ﬂ\/[s — MB 1 ﬁ o Cf’ B(g) dag (A3)

- - ; : | :
Be =P ., (Pe-Po)+(ar-0), y-1 ®poffuo %_s,a% S crpt) @ - d5,0d L et a(;)] (A4

PBO - Pao Pao + Qo 7 FE)Z i
&
where
2
223l - i - Mo+l o (B -Today 5[, Metnri A
¢P:°4 1 [(7 1)Me, ]Z_]MG‘+ Mg + 7 Yo T, Npr (Mq,+ Vi - 1) (45)

#e,8 & f, - Mg § 1 ( -2 :
’ . - - T 1 o (B - Taw)p 5l . e -Mp ¥l 6
(iéq p>-2;E (7 l)Mﬂ+]:lMa+ zﬁs'MB Mg2 + T Npp |l + G- D (at = i) (a6)
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(A7)

(48)

(49)



5l NACA TN L3L7
APPENDIX B

DERIVATION OF EQUATION FOR Zy

The derivation for ZT will be obtained and then generalized to

arbitrery N. The wave diagram of figure 9(a) shows the location of the
numbered points. The symbol Xxg denotes the distence of the poiht 6

from the origin, and so forth. The following equations are obtained by
simple geometry from figure 9(a):

xp = Ugrt2 (B1)
xo = Ugrty + UII(t'T - ty) + (U + a.)I(‘bg - ‘b-() (B2)

Combining .equations (Bl) end (B2) yields

t Ugr - U t Uy - U
b7 |y ST - Ir t2 eI ” TIT (83)
t1 Upp - (U + &)ty Urp - (U+ a1

Also from figure 9(a),

x11 = UsTb11 (BY)
xq7 = Ugpty + Upp(ty - t1) - Ugp(ty - 10) + (U + a)g(tnn - t10)  (B5)

x; = Urtyo + (U + a)p(t17 - t10) (B6)

Combining equation (BL) with equation (B6) end combining equation (B5)
with equation (B6) yields :

t11 ay

—1 B
ti0 (U+ el - UsT (B7)
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and

%10 _ Uez - UII/EI -1 (88)
B Usz1-U1 \bl

Now

tin _ f11 _ fta tio

(B9)
L TR To
Substitution of equations (B3), (B7), and (B8) into equation (B9) pro-
duces
Y11 _Usr - Ump 81 (t2 (B10)
13, Ugr -Up (U+a)p - Urr\hy
or
ﬂ-.l_ = Z1 1_2. -1 (Bll)
a1 !
Since the origin in figure 9 could be shifted to any arbitrary
location snd the seame gecmetrical relations sbove could be derived in
the new location the generalized formula for Zy can be written from
inspection of equations (B10) and (Bll) as
Uowg ~
75 = sN = UNsL o (B12)

Usy - Uy (U + a)N - Uyl
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Figure 4.~ Compressibility corrections as a function of shock pressure
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Figure 23.- Comparison of averasged experimental local shock pressure
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Flgure 35.- Comparison of averaged experimental local shock pressure

b
ratios with various theoretical predictions. §E2 = 9.0. Flagged
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Figure 36.- Comparison of averaged experimental local shock pressure

b
ratios with various theoretical predictions. _Bo 10.0. The verti-
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